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The applicability of the concepts of finite-size scaling and universality to nonequilibrium phase transitions is
considered in the framework of the one-dimensional totally asymmetric simple-exclusion process with open
boundaries. In the thermodynamic limit there are boundary-induced transitions both of the first and second
order between steady-state phases of the model. We derive finite-size scaling expressions for the current near
the continuous phase transition and for the local density near the first-order transition under different stochastic
dynamics and compare them to establish the existence of universal functions. Next we study numerically the
finite-size behavior of the Lee-Yang zeros of the normalization factor for the different steady-state
probabilities.
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I. INTRODUCTION

Usually, the most general and fundamental properties of
equilibrium phase transitions are formulated as scaling laws
for thermodynamic and correlation functions. The scaling
hypothesis states that certain such functions becomesgener-
alizedd homogeneous functions of the relevant variables
close to the critical point. According to the universality hy-
pothesis the large variety of different models can be divided
into a few classes with respect to their critical behavior, de-
pending on the dimensionality of the system, the symmetry
of the order parameter, and the range of interactionsfinite or
infinited. Universality implies that the scaling functions are
the same for all systems within a given universality class, as
much as the critical exponents are.

Since the beginning of the 1970s, when the basic ideas of
finite-size scalingsFSSd were stated by Fisherf1g and Fisher
and Barberf2g, a comprehensive theory has been developed;
see the reviews inf3,4g and the recent book inf5g. Close to
the bulk critical point, when the bulk correlation length be-
comes comparable to the characteristic size of the system,
this theory offers a description in terms of finite-size scaling
functions, the universality of which depends, in addition, on
the shape of the system and the type of the boundary condi-
tions. The asymptotic behavior of these functions reveals an
intimate mechanism of how the singularities build up near a
phase transition point as the thermodynamic limit is ap-
proached.

A quite different program of analysis of the appearence of
singularities in the thermodynamic limit has been offered in
the classical paper by Yang and Leef6g. They studied how
the zeros of the Ising model partition function in the complex
magnetic field plane approach the real axis with the increase
of the number of spins. Fisherf7g extended their approach to
the zeros of the partition function in the complex temperature
plane. By calculating in the thermodynamic limit the line of
zeros and their density near the positive real axis one can
exactly locate the transition point and obtain the order of the
phase transition.

It seems quite challenging to extend the above ideas to the
case of phase transitions far from equilibrium. In general, for
stochastic processes it is not clear how to define a meaning-
ful energy function on the configuration space that would be
consistent with both the transition probabilitiessor ratesd and
the stationary probability distribution. The problem of find-
ing analogs of the equilibrium partition function and thermo-
dynamic potential for models which do not satisfy the de-
tailed balance condition is still open. The first exact results in
that direction have been obtained recently by Derrida, Leb-
owitz, and Speer for the symmetricf8g and asymmetricf9g
simple-exclusion process.

To our knowledge, finite-size scaling at a nonequilibrium
critical point and its universality have been checked for the
pair-contact process with and without diffusion; for a review,
see f10g. For the asymmetric simple-exclusion process
sASEPd, finite-size scaling at both the continuous and first-
order transitions has been established only in the case of
forward-ordered sequential dynamics by one of the present
authorsf11g. It is one of the aims of this work to check if the
same form of the FSS functions holds for the ASEP with
continuous-time dynamics and with a differnt type of
discrete-time dynamics—the parallel one.

It is worth mentioning that the model and its generaliza-
tions have found numerous applications for the description
of such diverse phenomena as kinetics of biopolymerization
f12,13g, single-lane vehicular trafficf14–16g, data packet
transport in the Internetf17g, surface growthf18g, shock
structuresf19,20g, directed movement of molecular motors
along filamentsf21,22g, and statistical significance of se-
quence alignmentsf23g; see also the reviews inf24,25g.

Essential progress has been made recently in the exten-
sion of the Lee-Yang theory to special nonequilibrium cases.
Arndt f26g recognized that the normalization factor of the
stationary probability distribution for a one-dimensional sto-
chastic diffusion model with two types of particles plays the
role of a grand canonical partition function. By considering
its roots in the complex fugacity plane for finite numbers of
sites, he was able to distinguish two regions of analiticity
which were identified with two different phases. The con-
stant density of roots at the positive real axis in the thermo-
dynamic limit is an evidence for a first-order phase transi-*Electronic address: brankov@bas.bg
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tion. These observations have initiated an avalanche of
similar investigations in the context of various models exhib-
iting nonequilibrium phase transitions. Arndtet al. f27g and
Dammeret al. f28g studied the zeros of the survival prob-
ability for models in the directed percolationsDPd universal-
ity class. As is well known, DP can be interpreted as a dy-
namical process by considering the direction of activity
spreading as temporal. It was notedf28g that the distribution
of the zeros in the plane of complex probability of an open
bond provides information about universal properties, such
as the critical exponents of the spatial and temporal correla-
tion lengths. Next, Blythe and Evansf29g found that the
distribution of the zeros of the stationary probability normal-
ization factor for the continuous-time ASEP with open
boundaries, considered in the plane of a complex injection
rate, agrees with the Lee-Yang equilibrium theory for both
the first- and second-order phase transitions. A review of
some recent work in which the Lee-Yang theory has been
successfully applied to nonequilibrium phase transitions is
given in f30g. Next, Benaet al. f31g showed that the Lee-
Yang strategy works also for a mean-field-like urn model for
sand separation. Moreover, they observed that the rate of
convergence of the zeros of the probability normalization
factor to the transition point obeys the FSS prediction for the
finite-size shift of the pseudocritical temperature. Jafarpour
found further evidence for the applicability of the Lee-Yang
theory to a model of two types of particles hopping in oppo-
site directions on a ringf32g and to a reaction-diffusion
model on a chain with open boundaryf33g.

The real breakthrough in our understanding of the appli-
cability of the Lee-Yang theory to ASEP occurred this year.
Blythe et al. f34,35g have found mappings of the normaliza-
tion factor for the parallel-update ASEP onto several thermo-
dynamically equivalent two-dimensional lattice path prob-
lems involving weighted Dyck or Motzkin paths. They have
shownf35g that the critical behavior of the ASEP is a com-
bination of that for two adsorbing Dyck walks: the second-
order phase transition corresponds to adsorption or desorp-
tion of one of the walks and the first-order one to a
cooperative transition of the two chains. Brak and Essam
f36g have shown that the three matrix representations of the
algebra of the continuous-time ASEPsthe so-called DEHP
algebrad can be interpreted as transfer matrices for different
weighted lattice path problems. Brak, de Gier, and Rittenberg
f37g constructed a new representation of the DEHP algebra
which gives the transfer matrix for a one-transit-walk model.
The totally ASEPsTASEPd current and density were related
to the equilibrium densities of the latter model. Furthermore,
the transition between the disordered low- or high-density
phases and the maximum-current phase was interpreted as a
special surface phase transition with a single critical expo-
nent f=1/2, known in polymer physics. The above results
allow one to regard the normalization factor of the ASEP
stationary probability distribution as an equilibrium configu-
ration sum for certain polymer chains interacting with a fixed
interface.

The paper is organised as follows. A brief description of
the finite-size TASEP with open boundaries and different
types of dynamics is given in Sec. II. Here the known rela-
tionships between the corresponding exact finite-size expres-

sions for the normalization factor of the stationary probabil-
ity distribution, the stationary current, and local density are
given too. They are analyzed within the framework of finite-
size scaling for the current at the second-order phase transi-
tion in Sec. III and for the particle density at the first-order
phase transition in Sec. IV. In each case the FSS functions
corresponding to the different updates are compared and
their universal shape is established. The distribution of the
zeros of the normalization factor for the TASEP with
discrete-time updates is investigated in Sec. V and compared
to the known results for continuous-time dynamics. The rate
of convergence of the zeros to the critical point, as the num-
ber of sites in the chain increases, is estimated numerically.
The paper closes with Sec. VI containing the general conclu-
sions.

II. MODEL

We consider the totally asymmetric simple-exclusion pro-
cess on a finite chain ofL sites with open boundaries. For a
mathematical definition of the exclusion processes we refer
the reader to the book inf38g, and for a recent review on
exactly solvable models far from equilibrium tof25g. The
configurations of the system are defined by a set ofL binary
variablesht1,t2, . . . ,tLj, whereti =0 sti =1d means that sitei
of the chain is emptysoccupied by exactly one particled. The
particles obey a stochastic dynamics according to which they
may hop only to empty nearest-neighbor sites to the right.
The open boundary conditions imply that a particle can be
injected at the left end of the chainsi =1d and removed at the
right endsi =Ld. The order in which the local hopping, injec-
tion and particle removal take place in space and time de-
fines the dynamics—i.e., the way in which the configurations
are updated in the course of time. Basically, one distin-
guishes between continuous-time and discrete-time updates.
A realisation of the continuous-time master equation is given
by the random-sequential update. In this case during every
infinitesimal time step t→ t+dt each particle on site
i P h1,2, . . . ,L−1j can hop to the right with probabilitypdt
provided the target site is free. In addition, a particle is in-
jected at sitei =1 with probabilityadt if t1=0 and particle is
removed from sitei =L with probability bdt if tL=1. Other-
wise the configuration remains unchanged. By rescaling of
time one can always setp=1. In the case of discrete-time
updates, during the time stept→ t+1 attempts are made to
change the state of each lattice site: hopping to the right with
probability p, injection ati =1, and removal fromi =L with
probabilitiesa andb, respectively. According to the order of
performance of these attempts, there are four basic cases:
forward- s→d and backward-s←d ordered sequential, sublat-
tice parallelss-id, and fully parallelsid. Their precise defini-
tion is given, e.g., inf39g. For easy reference they are dis-
tinguished here by the corresponding superscripts→, ←, s-i,
and i.

In all of the above cases it has been proved that the
steady-state probabilityPst1,t2, . . . ,tLd can be written in the
form of a scalar product of noncommuting matricessthe so-
called matrix-product ansatzd:
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Pst1,t2, . . . ,tLd = ZL
−1kWup

i=1

L

ftiD + s1 − tidEguVl. s1d

Here the two matricesD and E act on the vectors of an
auxiliary sin general infinite-dimensionald vector spaceS, the
vectorsuVlPS andkWuPS†, whereS† is the dual ofS. The
normalization factorZL is of special interest for us and will
be considered in detail in Sec. V.

We mention that the case of random-sequential update
was solved first by using the recursion relations method
f40,41g and then by means of the matrix-product ansatz
sMPAd f42g. Next, the method of the MPA was successfully
applied for obtaining the steady-state properties in all the
basic cases of discrete-time dynamics: forward- and
backward-ordered sequentialf43–45g, sublattice parallel
f46,47g, and fully parallel dynamicsf48,49g.

The phase diagram for all the discrete-time updates has
the same structure as shown in Fig. 1: it contains maximum-
current sMCd, low-density sLDd, and high-densitysHDd
phases. The maximum-current phase is separated by lines of
continuous phase transitionssa=ac,bcøbø1d and sb
=bc,acøaø1d from the low-density and high-density
phases, respectively. Hereac andbc are the critical values of
the injection and removal probabilities:

ac = bc = 1 −Î1 − p. s2d

The above phases are identified with respect to the analytic
form of the bulk current: for fixedp, the current in the low-
shigh-d density phase depends only ona sbd, and in the
maximum-current phase it is independent of botha and b.

On crossing the borderline between the maximum-current
and the low-shigh-d density phase, the current itself and its
first derivative with respect toa sbd change continously, and
the second derivative with respect toa sbd udergoes a finite
jump. The coexistence line between the low- and high-
density phases is given bya=b, 0øbøbc; on crossing it,
both the bulk density and the first derivative of the current
undergo finite jumps.

In the continuous-time case the phase structure is the
same. The only differences are thata andb are rates which
can take arbitrary non-negative values andac=bc=1/2.
However, it is convenient to considera and b again in the
unit interval, which allows for the physical interpretation of
the boundary conditions as coupling of the chain to two res-
ervoirs: left-hand and right-hand ones with particle densities
a and 1−b, respectively.

The analysis of the matrix product representations for the
→, ←, and s-i updates reveals that the corresponding station-
ary states may be regarded as physically equivalentf47g. We
quote the equality of the finite-size currentsJL,

JL
→ = JL

← = JL
s-i, s3d

and the relationships between the local densitiesrLsid=ktil at
site i f47g,

rL
→sid = rL

←sid − JL
→, rL

s-isid = HrL
→sid, i odd,

rL
←sid, i even.

J s4d

As shown inf48g, the currentJL
i and local densityrL

i sid
for the TASEP with fully parallel update can also be ex-
pressed in terms of those for the forward-ordered sequential
update:

JL
i =

JL
→

1 + JL
→ , rL

i sid =
rL

→sid + JL
→

1 + JL
→ . s5d

As far as the relationships between the continuous-time
and discrete-time updates are concerned, we note that the
representation of the matricesD→sa ,b ;pd and E→sa ,b ;pd
found in f45g is related to the representationD3sa ,bd and
E3sa ,bd of the random-sequentialsDEHPd algebraf42g by
the limiting procedure

lim
p→0

pD→spa,pb;pd = D3sa,bd,

lim
p→0

pE→spa,pb;pd = E3sa,bd. s6d

Therefore, the finite-size currentJL
ct and local densityrL

ctsid of
the continuous-time TASEP follow from the corresponding
quantities of the discrete-time TASEP with forward-ordered
sequential dynamics in the limits

JL
ctsa,bd = lim

p→0
JL
→spa,pb;pd/p,

rL
ctsi ua,bd = lim

p→0
rL

→si upa,pb;pd. s7d

The relationship between the parallel and continuous-time
TASEP at algebraic level is not so straightforward, since the

FIG. 1. The phase diagram in the plane of the injection and
removal probabilitiesa andb ssee the textd for hopping probability
p=0.75. The maximum-current phase occupies region C. Region
A=AI øAII corresponds to the low-density phase and region B
=BIøBII to the high-density phase. Subregions AIsBId and AII
sBII d are distinguished by the different analytic form of the density
profile. The boundary between them,b=bc, 0øaøac sa=ac,0
øbøbcd, is shown by the dashed segment of a straight line. The
solid line a=b between subregions AI and BI is the coexistence
line of the low- and high-density phases.
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former case was solved either by using a quartic algebraf48g
or by a bond-oriented matrix-product ansatzf49g. However,
from the definition of the parallel dynamics it is clear that by
rescaling the injection and removal probabilities,a=pã, b

=pb̃, and taking the limitp→0 one will recover the results
for the continuous-time TASEP with injection and removal

ratesã, b̃, respectively. At the level of the grand canonical
generating functions the above limiting process was carried
out in f34g.

Since the relationshipss3d ands4d are rather trivial, in the
present study we shall confine ourselves to the cases of
continuous-timesrandom-sequentiald update and two of the
discrete-time updates: forward-ordered sequential and paral-
lel.

III. FINITE-SIZE SCALING AT THE CONTINUOUS
PHASE TRANSITION

As we mentioned in the Introduction, the notions of the
Privman-Fisherf50g FSS have been recently extended to
nonequilibrium phase transitions in models belonging to the
directed percolation and diffusion-annihilation universality
classes,f51–53g. The first step in the analytic confirmation of
FSS for an exactly solved model of a driven lattice gas with
open boundaries was made inf11g where the TASEP with
forward-ordered sequential dynamics was studied.

Let us consider first the continuous phase transition across
the boundarya=ac, bcøbø1 between region AII of the
low-density phase and the maximum-current phase; see Fig.
1.

According to the basic FSS hypotheses, the FSS variable
in the case of a second-order transition, characterized by di-
verging bulk correlation lengthl, should be given by the
ratio L /l, whereL is the finite size of the system. As is well
known, in the case at hand the correlation lengthla slbd in
the low- shigh-d density phase depends on whether the up-
date is a discrete-ssuperscript #d or continuous-time onessu-
perscriptctd ssee, e.g.,f41,49gd:

1/ls
# = lnF1 +

ssc − sd2

ssp − sd G ,

1/ls
ct = lnF1 +

s1/2 −sd2

ss1 − sd G ss = a,bd, s8d

and 1/l;0 in the maximum-current phase. The relationship
between the discrete-time and continuous-time correlation
lengths is ls

ct=limp→0 lps
# ss=a ,bd. Naturally, since we

study a boundary-induced phase transition, the physical
quantity which measures the distance to the steady-state
critical point is the deviation of the injection probabilitysor
rated from its critical value. From Eq.s8d we deduce that the
critical exponent of the correlation length for the second-
order phase transition isn=2, irrespectively of the type of
dynamics.

In agreement with the equilibrium theory, the FSS vari-
able asL→` anda→ac

− is expected to be given byf11g

L/l# .
Lsac − ad2

acsp − acd
ª sx1

#d2, s9d

in the case of a discrete-time update, and by

L/lct . 4Ls1/2 −ad2
ª sx1

ctd2, s10d

in the case of a continuous-time update.
The exact finite-chain results obtained inf11,45,49g are

conveniently expressed in terms of the parameters

d = Î1 − p, a = d + d−1, j =
p − a

ad
, h =

p − b

bd
,

s11d

which will be used here for the discrete-time updates. The
corresponding parameters for the continuous-time dynamics
are

d̃ = 1, ã = 2, j̃ =
1 − a

a
, h̃ =

1 − b

b
. s12d

In terms of the above notation we specify the sign of the
finite-size scaling variables defined in Eqs.s9d and s10d as
follows:

x1
# = sa + 2d−1/2L1/2sj − 1d, x1

ct = s1/2dL1/2sj̃ − 1d. s13d

In Ref. f11g the finite-size currentJL
→=ZL−1

→ /ZL
→ was ana-

lyzed by using the following exact representation ofZL
→ in

the subregion AII of the low-density phasesa,ac,bd f45g:

ZL
AII, → = Sd

p
DLj − j−1

j − h
sa + j + j−1dL + ZL

C,→. s14d

Here the expression for the normalization factor in the
maximum-current phasesregion C of the phase diagramd
whenaÞb is

ZL
C,→ = Sd

p
DLjILsjd − hILshd

j − h
, s15d

where the integral

ILsjd =
2

p
E

0

p

df
sa + 2 cosfdLsin2 f

1 − 2j cosf + j2 s16d

is a nonanalytic function ofj at j=1. For all finite L the
normalization factorZL

AII, → in region AII represents an ana-
lytic continuation ofZL

C,→ from the domaina.ac to the
domaina,ac; seef45g.

A direct application of the Laplace method for evaluation
of the integral s16d as L→` shows that it changes its
leading-order asymptotic behavior fromOsL−3/2d for jÞ1 to
OsL−1/2d for j=1; see Eq.s14d in f54g. The finite-size expres-
sion that interpolates between these limiting asymptotic
forms can be readily obtained by using small-argument ex-
pansion of the trigonometric functions in the integrand. The
result forx1sL ,td=Os1d,0 is f11g

ILsjd .
sa + 2dL+1/2

jÎpL
Xs− x1d, s17d

where the FSS functionX is given by
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Xsxd = 1 −Îpxex2
f1 − Fsxdg, Fsxd =

2
Îp
E

0

x

e−t2dt.

s18d

Remarkably, the functionX is closely related to the FSS

form of the partition functionẐ2L
s1dskd for fully directed walks

sactually, Dyck pathsd of 2L steps on the diagonally rotated
square lattice, which begin and end on a wallsthex axisd and
have weightk ascribed to each contact with the wallf55g.
Near the binding-unbinding transition, whenk→kc=2 and
L→`, the following FSS behavior was found in Ref.f55g:

Ẑ2L
s1dskd .

4L

L1/2ŵs1dsvd, v =
k − 2

2
L1/2, s19d

where

ŵs1dsvd =
2

Îp
Xs− vd. s20d

The fact that the above relationship is not accidential can be
understood if one realizes that the normalization factor for
the continuous-time TASEP in the limitb→` becomes

ZL
ctsa,`d = o

p=1

L

BL,pa−p = aẐ2L
s1ds1/ad, s21d

where the Ballot numberBL,p gives the number of Dyck
paths with length 2L andp returns to thex axis. The equality
s21d expresses the known representation ofZL

ctsa ,`d as the
partition function of Dyck paths for which each contact with
the x axis, apart from the start, has a weight 1/a f34g. For
these paths the binding-unbinding transition takes place at
injection rateac=1/kc=1/2, and the FSSvariable becomes
v.2s1/2−adL1/2=x1

ct.
To continue our analysis, we substitute Eq.s17d into Eq.

s15d and keeping the 1/L corrections obtain the asymptotic
form

ZL
C,→ . Sd

p
DL 1

j − h

sa + 2dL+1/2

ÎpL
FXsux1ud −

h

s1 − hd2

a + 2

2L
G .

s22d

The finite-size corrections to the thermodynamic current at
fixed b.bc were evaluated to the leading order asL→`.
The results aref11g in region C of the phase diagram, asa
→ac

+,

JL
C,→ − J`

C,→ .
1

L
J`

C,→F 1

2Xsux1ud
− x1

2G , s23d

and in region AII, asa→ac
−,

JL
AII, → − J`

AII, → .
1

L
J`

C,→F 1

4Îpx1e
x1
2
+ 2Xsx1d

G . s24d

Here

J`
C,→ ; J`

MC,→ =
1 − s1 − pd1/2

1 + s1 + pd1/2, J`
AII, → ; J`

LD,→ =
asp − ad
ps1 − ad

s25d

are the thermodynamic currents in the maximum-current and
low-density phases, respectively.

As a bulk order parameter of the continuous phase transi-
tion we consider the differenceD`sa ;pdªJ`sa=1;pd
−J`sa ;pd. In the case of forward-ordered sequential dynam-
ics we obtain, from Eq.s25d,

D`
→sa;pd = Hsa − acd2/fps1 − adg, a ø ac,

0, a ù ac,
J s26d

and, according to Eq.s7d, in the case of continuous-time
dynamics,

D`
ctsad = lim

p→0
D`

→spa;pd/p = Hsa − 1/2d2, a ø 1/2,

0, a ù 1/2.
J

s27d

The above results suggest that the critical exponent for the
order parameter has the universal value of 2.

A consistent choice of the finite-size order parameter, dif-
ferent from the one considered inf11g, is given by
DLsa ;pdªJLsa=1;pd−JLsa ;pd. With the aid of Eqs.s23d
and s24d and the appropriate relationships between the cur-
rents corresponding to the different types of dynamics, we
obtain that the leading-order FSS for the order parameter has
the form

DL − D` .
1

L
J`

MCGsx1d, s28d

where the FSS functionG is universal:

Gsx1d =5
3

2
+ x1

2 − f2Xsux1udg−1, x1 ø 0,

3

2
− f4Îpx1e

x1
2
+ 2Xsx1dg−1, x1 ù 0.6 s29d

Note that the bulk order parameterD` and the amplitude on
the right-hand side of Eq.s28d depend on the particular dy-
namics. The explicit dependence of the FSS variableL /l on
the parameters of the problem is also nonuniversalfcompare
Eqs.s9d ands10dg, but depends only on the fact whether the
dynamics is a continuous-time or discrete-time one.

Since the current in the high-density phase maps onto the
low-density phase under the exchange of argumentsa↔b,
the FSS properties of the continuous transition across the
boundaryb=bc, acøaø1 between the high-density phase
and the maximum-current phase follow trivially from the
above results and the particle-hole symmetry.

IV. FINITE-SIZE SCALING AT THE FIRST-ORDER
TRANSITION

In the thermodynamic limit the first-order phase transition
occurs across the borderlineb=a, 0øaøac sh=j ,jù1d
between subregions AI and BI of the phase diagram; see
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Fig. 1. It manifests itself by a finite jump in the bulk density,
Dr`=r`

HD−r`
LD .0, wherer`

HD sr`
LDd is the bulk density in

the high- slow-d density phase at the transition point. The
magnitude of the jump ata=b has the general formDr`

=Asb ;pdsbc−bd, whereAsb ;pd is an amplitude which de-
pends on the specific update:Act=2 and

A→sb;pd =
1 + s1 − pd1/2 − b

ps1 − bd
,

Aisb;pd =
ps1 − bd
sp − b2d

A→sb;pd. s30d

We remind the reader thatbc=1−s1−pd1/2;bc
# for all the

discrete-time updates andbc=1/2;bc
ct for the continuous-

time dynamics.
It is known that the nonequilibrium first-order phase tran-

sition in the TASEP is characterised by adivergingcorrela-
tion lengthl defined asf41g

1/l = u1/la − 1/lbu = C2sb,pdua − bu + Osua − bu2d,

s31d

where the factorC2sb ,pd depends on whether the update is
discrete or continuous time:

C2
#sb,pd =

f1 + s1 − pd1/2 − bgsbc
# − bd

bs1 − bdsp − bd
,

C2
ctsbd =

2s1/2 −bd
bs1 − bd

. s32d

Here and below the superscript # stands for all the discrete-
time updates. As expected,C2

ctsbd=limp→0 C2
#spb ,pd. From

Eq. s31d it follows that the correlation length at the first-order
phase transition in the TASEP is described by a critical ex-
ponentn=1, irrespectively of the update.

In Ref. f11g the case of forward-ordered sequential update
was analyzed and the finite-size scaling variablex2=C2sb
−adL was introduced. Note thatx2 is the natural extension to
negative values of the variableL /l.C2ua−buL. By using
the techniques off11g and relationshipss5d ands7d, one can
readily show that close to the first-order transition linea
=b,ac=bc there exists a universal finite-size scaling func-
tion for the local density on the macroscopic scale,i /L=r,
0, r ,1:

rLsrL ub;pd = r`
LDsb;pd + Dr`sb;pd

ex2r − 1

ex2 − 1
. s33d

Here the coefficientsr`
LD and Dr` depend on the specific

updatefsee Eq.s30dg and recall that

r`
LD,→sa;pd =

as1 − pd
ps1 − ad

, r`
LD,isa;pd =

as1 − ad
p − a2 ,

r`
LD,ctsad = a. s34d

In the limit x2→0 expression s33d reduces to the
well-known linear density profile on the coexistence line,

rLsrLd=r`
LD +rDr`, and in the limitx2→ +` sx2→−`d one

recovers the bulk density in the low-densityshigh-densityd
phase.

V. ZEROS OF THE NORMALIZATION FACTOR IN THE
COMPLEX PLANE

As was mentioned in the Introduction, there is a sound
evidence that the zeros of the steady-state probability nor-
malization factorZL in Eq. s1d—say, in the plane of a com-
plex injection probabilitysrated a=x+iy—may provide use-
ful information about the nonequilibrium phase transitions of
the TASEP. Evidently,ZL is defined up to a factor which may
depend on the parameters of the problemse.g., onp, a, bd.
Indeed, if one multiplies the steady-state weights of all the
configurations by the same factor, the probability distribution
will not change but that common factor will appear in the
normalizationZL. For example, the explicit result for the
normalizationZL

ct in the continuous-time TASEP given by
Eq. sB10d in Ref. f42g, denoted here with the subscript
DEHP, and the one given by Eq.s6.1d at q=0 in Ref. f56g,
with the subscript USW, differ by a rate-dependent factor:

uZL
ctuDEHP=

a + b − 1

ab
uZL

ctuUSW. s35d

Obviously, the additional zero of the expression on the left-
hand side at the mean-field linea+b=1 is irrelevant to the
phase transitions. In our numerical study we will use the
expression from Ref.f42g. Similarly, the result forZL

i in Ref.
f49g, denoted here with the subscript GN, differs from the
one in Ref.f48g, subscript ERS, by a factor depending on all
the transition probabilities:

uZL
i uGN =

sabdL

p
uZL

i uERS. s36d

In our study we will use forZL
i the result of Ref.f48g which

is rather simply related to our resultf45g for ZL
→:

ZL
i = pLZL

→f1 + JL
→g. s37d

One can readily show that at fixed 0,bø1 the zeros of the
factor f1+JL

→g are at the pointsa= ±p1/2 which lie out of the
domain of the low-density phase, since 0,a,1−s1−pd1/2

,p1/2 for all 0,p,1. Hence, the zeros ofZL
i which are

relevant to the phase transition coincide with those ofZL
→.

Note that due to Eqs.s6d and s37d the normalization fac-
tors for the continuous-time and discrete-time dynamics are
related by the following limits:

ZL
ctsa,bd = lim

p→0
ZL

i spa,pb;pd = lim
p→0

pLZL
→spa,pb;pd.

s38d

In deriving the last equality we have taken into account that
JL
→spa ,pb ;pd→0 asp→0; see Eq.s7d.

The loci of the zeros of the normalization factor in the
thermodynamic limit can easily be obtained with the aid of
the function
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gszd ª − lim
L→`

1

L
ln ZLsz,b;pd, s39d

which is the analog of the free energy density. Note that in
the cases of continuous-timef29,30g and forward-ordered se-
quential dynamics, the normalization behaves for largeL as
ZL.ALgJ`

−L, where the currentJ` in the thermodynamic
limit, the amplitudeA, and the exponentg depend on the
update and the phase under consideration. Thus we obtain

gctszd = ln J`
ctsz,bd, g→szd = ln J`

→sz,b;pd, s40d

which is not the case for the parallel update, when from Eq.
s37d it follows that

giszd = ln J`
→sz,b;pd − lnspd. s41d

The phase boundary in the complex planez=Resad
+i Imsad is defined by the equationf29g Reg1szd=Reg2szd
or, equivalently, by

uln J1sz,b;pdu = uln J2sz,b;pdu. s42d

Here the subscripts 1 and 2 refer to two different phases, so
that there are pointsz in the complex plane such thatg1szd
Þg2szd.

Below we compare the available analytical and numerical
results for the distribution of the zeros of the probability
normalization factorZLszd in the cases of continuous-time
and forward-ordered sequential dynamics both in the thermo-
dynamic limit and in the finite-size case.

A. Thermodynamic limit

The results for the TASEP with continuous-time dynamics
were obtained and analyzed by Blythe and Evansf29,30g.
Here we reproduce some of them for the sake of comparison
with the discrete-time updates. By taking into account the
expressions for the current in the different phases,J`

LD,ct

=as1−ad, J`
HD,ct=bs1−bd, and J`

MC,ct=1/4, oneobtains in
the thermodynamic limit exact analytical results.

sad The line of zeros in the plane of complexa=x+iy at
the second-order phase transitionsat a=1/2, b.1/2d be-
tween the low-density and maximum-current phases is given
by the equation

y = ± h− 1/4 −s1/2 −xd2 + f1/16 +s1/2 −xd2g1/2j1/2.

s43d

As shown inf29g, close to the transition pointa=1/2 the
asymptotic form of the locus of zeros has two branchesy
= ± s1/2−xd, xø1/2, which cross the positive real axis at
impact angle ofp /4; see the solid curve atb=1 in Fig. 2.
For the functionsgctszd in the corresponding two phases
close to the critical pointzc=1/2 one has

gLD,ctszd . lns1/4d − 4sz− zcd2, gMC,ctszd = lns1/4d.

s44d

By using Eq.s19d of Ref. f30g one obtains that the density of
zerosmssd at the positive real axis, as a function of the arch
length s of the phase boundary, decreases to zero linearly
with s→0 as

mctssd = 4s/p. s45d

This result is expected for a continuous phase transition in
the equilibrium Lee-Yang theory.

sbd The line of zeros in the plane ofa=x+iy at the first-
order phase transitionsat a=b,1/2d between the low-
density and high-density phases is given by the equation

y = ± h− 1/2 +x − x2 + fs1/2 −x + x2d2

+ b2s1 − bd2 − x2s1 − xd2g1/2j1/2. s46d

As shown inf29g, close to the transition point the asymptoic
form of the locus of zeros is a smooth curve that crosses the
positive real axis at right angle; see the solid curve atb
=1/3 in Fig. 2. For the functionsgctszd in the low- and high-
density phases close tozc=b one has

gLD,ctszd . ln bs1 − bd −
1 − 2b

bs1 − bd
sz− zcd,

gHD,ctszd = ln bs1 − bd. s47d

In view of Eq.s18d of Ref. f30g, the above expressions imply
that at the first-order phase transition the density of zeros
ms0d at the positive real axis is constant,

mcts0;bd =
1 − 2b

2pbs1 − bd
, s48d

in agreement with the equilibrium Lee-Yang theory.
In the case of forward-ordered sequential update, by ex-

panding the functiong→szd fsee Eq.s40dg in the neighbor-
hood of the continuous phase transition pointzc=ac sat fixed
b.bcd, we obtain

gLD,→szd . ln J`
MC,→ −

sz− zcd2

s1 − pd1/2f1 − s1 − pd1/2g2 ,

FIG. 2. Distribution of the zeros ofZL
ct in the complex-a plane at

L=40: the solid triangles are forb=1, and the solid circles forb
=1/3. Thesolid curves show the corresponding lines of zeros in the
limit L→`.
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gMC,→szd = ln J`
MC,→. s49d

Hence, the density of zerosm→ss;pd at the positive real axis,
as a function of the arch lengths of the phase boundary again
decreases to zero linearly withs→0,

m→ss;pd =
s

ps1 − pd1/2f1 − s1 − pd1/2g2 , s50d

but the proportionality coefficient differs from the one for the
continuous-time dynamics; see Eq.s45d. In view of Eq.s38d,
the definitions39d yields the relationship

gctsz;bd = lim
p→0

fg→spz,pb;pd − lnspdg, s51d

and hencemctssd=limp→0fp2m→ss;pdg.
In the neighborhood of the first-order phase transition at

zc=b,bc
# we obtain

gLD,→szd . ln
bsp − bd
ps1 − bd

−
b2 − 2b + p

bs1 − bdsp − bd
sz− zcd,

gHD,→szd = ln
bsp − bd
ps1 − bd

. s52d

Again the density of zerosm→s0;b ,pd at the positive real
axis equals a constant,

m→s0;b,pd =
b2 − 2b + p

2pbs1 − bdsp − bd
, s53d

different from the one for the continuous-time dynamics. As
follows from Eq.s51d, mcts0;bd=limp→0fpm→s0;pb ,pdg.

In the thermodynamic limit the line of zeros of the nor-
malization factorZL

→szd is given by the equation

y = ± h− sp2 − c2d/2 + px− x2

+ Îfsp2 − c2d/2 − px+ x2g2 + c2s1 − xd2 − x2sp − xd2j1/2.

s54d

Here

c = pJ̀MC,→ = f1 − s1 − pd1/2g2 s55d

for the second-order phase transition and

c = pJ̀HD,→ = bsp − bd/s1 − bd s56d

for the first-order phase transition. These curves are illus-
trated in Fig. 3 for the particular values ofp=3/4 andb
=3/4 or b=1/3, respectively. They have the same general
shape and asymptotic behavior close to the positive real axis
as the corresponding ones in the case of continuous-time
dynamics. Moreover, under the replacementa→pa shence,
x→px, y→pyd andb→pb, in the limit p→0 the curves54d
with substitutions55d maps onto the curves43d and with the
substitutions56d onto the curves46d.

B. Finite-size behavior

The loci of the zeros ofZLszd in the complex-a plane for
a finite chain of L=40 sites are shown in Fig. 2 for

continuous-time dynamics and in Fig. 3 for forward-ordered
sequential dynamics withp=3/4, so that ac=1/2 in both
cases. The values ofb are chosen so that one of them corre-
sponds to a second-order phase transitionsb=1 in the former
case andb=3/4 in the latter oned and the other one to a
first-order transitionsb=1/3 inboth casesd. The similarity of
the patterns in the cases of continuous-time and discrete-time
dynamics is obvious; see also Figs. 3 and 4 in Ref.f35g for
the parallel-update TASEP.

To derive quantitative information, we consider the clos-
est to the positive real axis pairhzL , z̄Lj of complex-conjugate
zeros ofZLszd, z=Resad+i Imsad, and evaluate the rate of
decrease of the distanceuzL−acu as L→` for both the
continuous-time and forward-ordered sequential dynamics.

In the case of a nonequilibrium second-order phase tran-
sition the best linear fits to the corresponding log-log plots
for several chain sizesL are shown in Fig. 4. The results
clearly indicate a power-law asymptotic behavior of the form

uzL − acu . AL−u, s57d

with amplitude A.1.031s8d and shift exponent u
.0.525s1d in the case of continuous-time dynamics,A
.0.784s8d and u.0.536s3d in the case of forward-ordered
sequential dynamics. Note that the estimated values ofu are
close to 1/n=1/2, wheren=2 is the critical exponent of the
bulk correlation length for the nonequilibrium second-order
phase transition. Remarkably, the same value 1/2 of the shift
exponentu was found by Benaet al. f31g for their urn model
which also exhibits a nonequilibrium second-order phase
transition in the thermodynamic limit. Our estimates of the
amplitudes for the different type of dynamics differ consid-
erably.

The case of a nonequilibrium first-order phase transition
was studied for the particular value ofb=1/3 sandp=3/4 in
the case of discrete-time dynamicsd when the transition point
is at ac=1/3. Ourbest linear fits to the log-log plots of the

FIG. 3. Distribution of the zeros ofZL
→ in the complex-a plane

at L=40 andp=3/4: thesolid triangles are forb=3/4 and thesolid
circles forb=1/3. Thesolid curves show the corresponding lines of
zeros in the limitL→`.
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distanceuzL−acu as a function of the chain sizeL are shown
in Fig. 5. They strongly suggest a power-law asymptotic de-
pendence of the forms57d with estimated values:A
.3.002s9d andu.0.943s6d for the continuous-time dynam-
ics, A.2.489s8d and u.0.970s7d for the forward-ordered
sequential dynamics. The above values ofu are close to
1/n=1, wheren=1 is the critical exponent of the bulk cor-
relation length for the nonequilibrium first-order phase tran-
sition. The amplitudes obtained for the considered updates
are definitely different.

VI. CONCLUSIONS

Our results support the conclusion that the versions of the
TASEP, based on different update rules, belong to the same
nonequilibriumFSS universality class. The critical exponent
of the correlation length isn=2 for the second-order phase
transition andn=1 for the first-order one. The finite-size
scaling functions are of the same shape for each transition
order, but differ by nonuniversal prefactors which depend on
the specific update. The explicit dependence of the FSS vari-
ableL /l on the parameters of the modelsthe probabilitiesa,

b, p or the ratesa, bd changes on passing from continuous-
time to a discrete-time dynamics.

From our numerical results on the rate of covergence of
the zeroszL, z̄L of the normalization factorZLszd in the plane
of complex injection probabilitysor rated to the transition
point a=ac.0 of the infinite chain, we conjecture that the
FSS prediction

uzL − acu = uz̄L − acu . AL−1/n s58d

is obeyed with a universal shift exponent 1/n. On the
grounds of the above argument and the plausible assumption
that the zeros which are closest to the positive real axis
dominate the analytical properties ofZLszd for the physically
meaningful positive values ofz, one can regardzL sor z̄Ld as
a shifted pseudocritical point. The amplitudeA in the above
finite-size shift relationship appears to be nonuniversal.
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