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Finite-size scaling and universality for the totally asymmetric simple-exclusion process
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The applicability of the concepts of finite-size scaling and universality to nonequilibrium phase transitions is
considered in the framework of the one-dimensional totally asymmetric simple-exclusion process with open
boundaries. In the thermodynamic limit there are boundary-induced transitions both of the first and second
order between steady-state phases of the model. We derive finite-size scaling expressions for the current near
the continuous phase transition and for the local density near the first-order transition under different stochastic
dynamics and compare them to establish the existence of universal functions. Next we study numerically the
finite-size behavior of the Lee-Yang zeros of the normalization factor for the different steady-state

probabilities.
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[. INTRODUCTION It seems quite challenging to extend the above ideas to the

Usually, the most general and fundamental properties of2S€ Of phase transitions far from equilibrium. In general, for
equilibrium phase transitions are formulated as scaling |aW$tochast|c processes it is not clear how to define a meaning-
for thermodynamic and correlation functions. The scaling!U! €nergy function on the configuration space that would be
hypothesis states that certain such functions becaerer- consistent with both the transition probabilities rates and
alized homogeneous functions of the relevant variabledh® Stationary probability distribution. The problem of find-
close to the critical point. According to the universality hy- 9 analogs of the equilibrium partition function and thermo-

pothesis the large variety of different models can be dividedlynamic potential for models which do not satisfy the de-
tailed balance condition is still open. The first exact results in

into a few classes with respect to their critical behavior, de-h iraction h . | )
pending on the dimensionality of the system, the symmetr); at direction have been obtained recently by Derrida, Leb-

of the order parameter, and the range of interactimite or ~ OWitz, and Speer for the symmetrig] and asymmetri¢9]
infinite). Universality implies that the scaling functions are Simple-exclusion process.

the same for all systems within a given universality class, as . 1© 0ur knowledge, finite-size scaling at a nonequilibrium
much as the critical exponents are. critical point and its universality have been checked for the

Since the beginning of the 1970s, when the basic ideas cRair-contact process with and without diffusion; for a review,

L . X . see [10]. For the asymmetric simple-exclusion process
finite-size scalindFSS were stated by Fish¢t] and Fisher (ASEDP, finite-size scaling at both the continuous and first-

and Barbe{?], apomprehenswe theory has _been deveIOdet’)rder transitions has been established only in the case of
see the reviews ifi3,4] and the recent book ifb]. Close to  ¢,nyard-ordered sequential dynamics by one of the present
the bulk critical point, when the bulk correlation length be- authorg11]. It is one of the aims of this work to check if the
comes comparable to the characteristic size of the systeragme form of the FSS functions holds for the ASEP with
this theory offers a description in terms of finite-size scalingcontinuous-time dynamics and with a differnt type of
functions, the universality of which depends, in addition, ongjscrete-time dynamics—the parallel one.
the shape of the system and the type of the boundary condi- |t js worth mentioning that the model and its generaliza-
tions. The asymptotic behavior of these functions reveals aflons have found numerous applications for the description
intimate mechanism of how the singularities build up near &f sych diverse phenomena as kinetics of biopolymerization
phase transition point as the thermodynamic limit is ap{12 13, single-lane vehicular traffif14—16, data packet
proached. transport in the Internefl7], surface growth[18], shock
A quite different program of analysis of the appearence oktryctures[19,20, directed movement of molecular motors
Singularities in the thermOdynamiC limit has been offered ina|ong ﬁ|aments[21,22], and statistical Signiﬁcance of se-
the classical paper by Yang and LE#. They studied how  quence alignmenti23]; see also the reviews {24,25.
the zeros of the ISing model partition function in the CompleX Essential progress has been made recenﬂy in the exten-
magnetic field plane approach the real axis with the increasgion of the Lee-Yang theory to special nonequilibrium cases.
of the number of spins. FishgT] extended their approach to Arndt [26] recognized that the normalization factor of the
the zeros of the partition function in the complex temperaturastationary probability distribution for a one-dimensional sto-
plane. By calculating in the thermodynamic limit the line of chastic diffusion model with two types of particles plays the
zeros and their density near the positive real axis one caple of a grand canonical partition function. By considering
exactly locate the transition point and obtain the order of thets roots in the complex fugacity plane for finite numbers of
phase transition. sites, he was able to distinguish two regions of analiticity
which were identified with two different phases. The con-
stant density of roots at the positive real axis in the thermo-
*Electronic address: brankov@bas.bg dynamic limit is an evidence for a first-order phase transi-
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tion. These observations have initiated an avalanche dfions for the normalization factor of the stationary probabil-
similar investigations in the context of various models exhib-ity distribution, the stationary current, and local density are
iting nonequilibrium phase transitions. Arnett al. [27] and  given too. They are analyzed within the framework of finite-
Dammeret al. [28] studied the zeros of the survival prob- size scaling for the current at the second-order phase transi-
ability for models in the directed percolati¢BP) universal- tion in Sec. Il and for the particle density at the first-order
ity class. As is well known, DP can be interpreted as a dyphase transition in Sec. IV. In each case the FSS functions
namical process by considering the direction of activitycorresponding to the different updates are compared and
spreading as temporal. It was nofe8] that the distribution  heir universal shape is established. The distribution of the
of the zeros in the plane of complex probability of an 0penyeqg of the normalization factor for the TASEP with
bond provides information about universal properties, suclyiseree time updates is investigated in Sec. V and compared

as the critical exponents of the spatial and temporal correlat- ; - :
. o the known results for continuous-time dynamics. The rate
tion lengths. Next, Blythe and Evarl29] found that the of convergence of the zeros to the critical point, as the num-

distribution of the zeros of the stationary probability normal—ber of sites in the chain increases, is estimated numerically.

ization factor for the continuous-time ASEP with open h I th Sec. VI taining th | |
boundaries, considered in the plane of a complex injectior] "€ Paper closes with Sec. VI containing the general conclu-

rate, agrees with the Lee-Yang equilibrium theory for bothS'O"S:

the first- and second-order phase transitions. A review of

some recent work in which the Lee-Yang theory has been

successfully applied to nonequilibrium phase transitions is Il. MODEL

given in[30]. Next, Benaet al. [31] showed that the Lee- ) o ]

Yang strategy works also for a mean-field-like urn model for ~We consider the totally asymmetric simple-exclusion pro-
sand separation. Moreover, they observed that the rate &€SS On a finite chain df sites with open boundaries. For a
convergence of the zeros of the probability normalizationmathematical definition pf the exclusion processes we refer
factor to the transition point obeys the FSS prediction for thdhe reader to the book if88], and for a recent review on
finite-size shift of the pseudocritical temperature. Jafarpouf*actly solvable models far from equilibrium {@5]. The
found further evidence for the applicability of the Lee-Yang configurations of the system are defined by a sdt bfnary
theory to a model of two types of particles hopping in oppo-Variables{r;, 7, ...,z }, wherer; =0 (7=1) means that site

site directions on a ring32] and to a reaction-diffusion Of the chain is emptyoccupied by exactly one partigleThe
model on a chain with open bounddi3a3]. particles obey a stochastic dynamics according to which they

The real breakthrough in our understanding of the appli{nay hop only to empty nearest-neighbor sites to the right.
cability of the Lee-Yang theory to ASEP occurred this year.The open boundary conditions imply that a particle can be
Blythe et al.[34,35 have found mappings of the normaliza- injected at the left end of the chaji=1) and removed at the
tion factor for the parallel-update ASEP onto several thermotight end(i=L). The order in which the local hopping, injec-
dynamically equivalent two-dimensional lattice path prob-tion and particle removal take place in space and time de-
lems involving weighted Dyck or Motzkin paths. They have fines the dynamics—i.e., the way in which the configurations
shown[35] that the critical behavior of the ASEP is a com- are updated in the course of time. Basically, one distin-
bination of that for two adsorbing Dyck walks: the second-guishes between continuous-time and discrete-time updates.
order phase transition corresponds to adsorption or desorg realisation of the continuous-time master equation is given
tion of one of the walks and the first-order one to aby the random-sequential update. In this case during every
cooperative transition of the two chains. Brak and Essaninfinitesimal time stept—t+dt each particle on site
[36] have shown that the three matrix representations of thée {1,2,... L—-1} can hop to the right with probabilitpadt
algebra of the continuous-time ASHEhe so-called DEHP provided the target site is free. In addition, a particle is in-
algebra can be interpreted as transfer matrices for differenfjected at sité =1 with probability adt if 7,=0 and particle is
weighted lattice path problems. Brak, de Gier, and Rittenbergemoved from sité=L with probability Sdt if 7 =1. Other-
[37] constructed a new representation of the DEHP algebraise the configuration remains unchanged. By rescaling of
which gives the transfer matrix for a one-transit-walk model.time one can always sgi=1. In the case of discrete-time
The totally ASER(TASEP current and density were related updates, during the time steép-t+1 attempts are made to
to the equilibrium densities of the latter model. Furthermore change the state of each lattice site: hopping to the right with
the transition between the disordered low- or high-densityprobability p, injection ati=1, and removal from=L with
phases and the maximum-current phase was interpreted apeobabilitiesa and 8, respectively. According to the order of
special surface phase transition with a single critical expoperformance of these attempts, there are four basic cases:
nent ¢=1/2, known in polymer physics. The above results forward-(—) and backward¢—) ordered sequential, sublat-
allow one to regard the normalization factor of the ASEPtice parallel(s4l), and fully parallel(ll). Their precise defini-
stationary probability distribution as an equilibrium configu- tion is given, e.g., if39]. For easy reference they are dis-
ration sum for certain polymer chains interacting with a fixedtinguished here by the corresponding superscripfs—, s,
interface. and|.

The paper is organised as follows. A brief description of In all of the above cases it has been proved that the
the finite-size TASEP with open boundaries and differentsteady-state probability(r, 7, ...,7) can be written in the
types of dynamics is given in Sec. Il. Here the known rela-form of a scalar product of noncommuting matri¢dse so-
tionships between the corresponding exact finite-size expresalled matrix-product ansatz
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1.0 T T T T On crossing the borderline between the maximum-current
and the low-(high-) density phase, the current itself and its
first derivative with respect te (8) change continously, and

0.8 - Al ¢ N the second derivative with respectda(s) udergoes a finite
jump. The coexistence line between the low- and high-
06 L i density phases is given bhy=8, 0= B=<f3; on crossing it,

both the bulk density and the first derivative of the current
@ B p--mmmmmmmmos undergo finite jumps.
In the continuous-time case the phase structure is the

= I -
04 Al i same. The only differences are thatnd 8 are rates which
i can take arbitrary non-negative values ang=(8.=1/2.
02 Bl | Bl i However, it is convenient to consider and 8 again in the
! unit interval, which allows for the physical interpretation of
i the boundary conditions as coupling of the chain to two res-
0.0 1 Lo 1 ervoirs: left-hand and right-hand ones with particle densities
0.0 0.2 0.4 o 0.6 0.8 1.0 a and 1-8, respectively.
o The analysis of the matrix product representations for the

FIG. 1. The phase diagram in the plane of the injection and_ ' and sk updates reveals that the corresponding station-

removal probabilitiesr and 3 (see the textfor hopping probability ary states may be regarded as physically equivatfit We

p=0.75. The maximum-current phase occupies region C. Region‘}]uo'[e the equality of the finite-size curredts

A=Al UAIl corresponds to the low-density phase and region B J?:Jf:‘)sﬂ, (3)
=BIUBII to the high-density phase. Subregions @l) and All

(BIl) are distinguished by the different analytic form of the densityand the relationships between the local densjijés =(r,) at
profile. The boundary between thefi=3;, 0<a<a; (a=a;,0 sitei [47],

< B=<p,), is shown by the dashed segment of a straight line. The o ]
solid line a=p between subregions Al and Bl is the coexistence =) = o (i) = I sy PL (i), iodd,
line of the low- and high-density phases. pr M =pc()=30, p()= (), i even. (4)

As shown in[48], the currentJ‘,‘_ and local densit)p','_(i)

L
P(7y.79, ... 1) =21 D+(1-mEIV. (1 for the TASEP with fully parallel update can also be ex-
(r1,72 =24 <W|i1:[1 K @=-nEV. Q) pressed in terms of those for the forward-ordered sequential

) update:
Here the two matrice® and E act on the vectors of an
auxiliary (in general infinite-dimensionaVector space, the = 3 1) = HOERN 5)
vectors|V) e S and(W| e ST, whereS' is the dual ofS. The g M V=" 30
normalization factoZ, is of special interest for us and will
be considered in detail in Sec. V. As far as the relationships between the continuous-time

We mention that the case of random-sequential updaténd discrete-time updates are concerned, we note that the
was solved first by using the recursion relations method€presentation of the matric&~(«,3;p) andE~(a, 8;p)
[40,41 and then by means of the matrix-product ansatZound in[45] is related to the representatid@y(«,) and
(MPA) [42]. Next, the method of the MPA was successfully Ex(a, 8) of the random-sequentidDEHP) algebra[42] by
applied for obtaining the steady-state properties in all théhe limiting procedure
basic cases of discrete-time dynamics: forward- and

backward-ordered sequentia#3-45, sublattice parallel ETO PD ™ (pa,pB;p) = Ds(a, B),
[46,47], and fully parallel dynamic$48,49.
The phase diagram for all the discrete-time updates has ; — Ch) =
the same structure as shown in Fig. 1: it contains maximum- :,ITO PE™(pa,pp:p) = Byl B). (6)

current (MC), low-density (LD), and high-density(HD)

phases. The maximum-current phase is separated by lines operefore, the finite-size curredff and local density((i) of

continuous phase transitionéx=a., B.<B8<1) and (8 the continuous-time TASEP follow from the corresponding

=B,,a,<a<1) from the low-density and high-density quantities of the discrete-time TASEP with forward-ordered
crHec—= 8=

phases, respectively. Heae and 3, are the critical values of S€duential dynamics in the limits

the injection and removal probabilities: I, B) = yr%\]f(pa, pB:p)/p,
ac=B.=1-\1-p. 2)

The above phases are identified with respect to the analytic pi(i|a.B) = lim p_"(i|pa,pB;p). (7)

form of the bulk current: for fixegb, the current in the low- p—0

(high-) density phase depends only en(8), and in the The relationship between the parallel and continuous-time

maximum-current phase it is independent of bettand 8.  TASEP at algebraic level is not so straightforward, since the
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former case was solved either by using a quartic alget8h s L= a)?
or by a bond-oriented matrix-product ansp48]. However, LI\ = m =
from the definition of the parallel dynamics it is clear that by P~
rescaling the injection and removal probabilities; pa, 8 in the case of a discrete-time update, and by

=pp, and taking the. limitp— 0 one wiI'I recover the results LN = 4L(1/2 - a)? = ()2, (10)
for the continuous-time TASEP with injection and removal

~ 7 . . 11N the case of a continuous-time update.

ratesa, B, respectively. At the level of the grand canonical n . . ) .
generating functions the above limiting process was carried The exact fmne—cham results obtained [1,45,49 are
out in [34]. conveniently expressed in terms of the parameters

Since the relationship@) and(4) are rather trivial, in the — p-«a p-8

. d=V1- =d+ d—l - - = "7

present study we shall confine ourselves to the cases of =vl=p, a= , €= ad = Bd
continuous-time(random-sequentiplupdate and two of the
discrete-time updates: forward-ordered sequential and paral- (1)

lel. which will be used here for the discrete-time updates. The
corresponding parameters for the continuous-time dynamics

IIl. FINITE-SIZE SCALING AT THE CONTINUOUS are
PHASE TRANSITION ~ 5 ~ 1-a _ 1-B8
d=1, a=2, é=——, Hp=—-—. (12
As we mentioned in the Introduction, the notions of the @ B
Privman-Fisher{50] FSS have been recently extended to|n terms of the above notation we specify the sign of the

nonequi”brium phase transitions in models belonging to thqinite_size Sca"ng variables defined in E(qg) and (10) as
directed percolation and diffusion-annihilation universality fg|lows:

classes|51-53. The first step in the analytic confirmation of _

FSS for an exactly solved model of a driven lattice gas with Xi=(a+2VALYHe-1), X'=(1/2LYA¢-1). (13
open boundaries was made [iil] where the TASEP with
forward-ordered sequential dynamics was studied.

Let us consider first the continuous phase transition acro
the boundarya=a;, B.<pB=<1 between region All of the
low-density phase and the maximum-current phase; see Fig. Le— gl
1 yp p g Zﬁll,—» — (9) ﬁ(a+ §+ g—l)L + ZE’_)' (14)

According to the basic FSS hypotheses, the FSS variable P/&=m
in the case of a second-order transition, characterized by dHere the expression for the normalization factor in the
verging bulk correlation length., should be given by the maximum-current phaséegion C of the phase diagram
ratio L/\, whereL is the finite size of the system. As is well whena# B is

042, 9

In Ref.[11] the finite-size currend,"=Z,7,/Z;" was ana-
gﬁzed by using the following exact representationZpf in
the subregion All of the low-density phaée< a.< B) [45]:

known, in the case at hand the correlation length( z) in d\Lel (&) = 7l ()
the low- (high-) density phase depends on whether the up- Zo = (—) L—m, (15
date is a discretgsuperscript #or continuous-time onésu- P -7
perscriptct) (see, e.g.[41,49): where the integral
_ 2 (™ (a+2cosd)sir’ ¢
b2 4 (=9 =" f do (16
1/)\(,—In{1+o(p_a)] L 7)o 1-2¢cosg+ &

is a nonanalytic function ot at £=1. For all finiteL the
o (1/2 = 0)? normalization factoZ"~ in region All represents an ana-
Ig=Inl1 +—0(1 g (c=a,p), (8)  Iytic continuation ofZ&~ from the domaina> oy to the
domaina < ag; see[45].
and 1A =0 in the maximum-current phase. The relationship A direct application of the Laplace method for evaluation

between the discrete-time and continuous-time correlatio e integral (16) as L-e shows thfig,'t changes its
lengths isAS=lim, o\ (c=a,B). Naturally, since we leading-order asymptotic behavior fro@(L™>) for ¢+ 1 to

g - p—0 N po e rany, . O(L™Y?) for £¢=1; see Eq(14) in [54]. The finite-size expres-
study a boundary-induced phase transition, the physma(P_ . ’ ' N .
quantity which measures the distance to the steady-stafg®" that mterpolqtes bemeen the_se limiting asymptotic
critical point is the deviation of the injection probabiligr  10rMS can be readily obtained by using small-argument ex

rate from its critical value. From Eq8) we deduce that the pansion of the trigonometric functions in the integrand. The
critical exponent of the correlation length for the second-Tesult forxy(L,H)=0(1) <0 is[11]

order phase transition i8=2, irrespectively of the type of (a+ 212

dynamics. 1.(&) = ”—TX(_ X1), (17)
In agreement with the equilibrium theory, the FSS vari- v

able asL —« and a— ¢ is expected to be given Hy1] where the FSS functioX is given by
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o2 2 (* 2 Cr— _ MC,— 1-(1-p)*? Al _ D _ap-a

= - - == . ‘Joc‘ E‘Joc’ = A oo’ E‘]oc’ =

X(X)=1-vmxe“[1 -P(x)], P(x) = e dt 1+(1+p)? o(l-a)
(18) (25

Remarkably, the functioiX is closely related to the FSS are the thermodynamic currents in the maximum-current and

form of the partition functiori(zlL)(K) for fully directed walks IOWA:ge;Eia/kpohr?jse?&z;reasnggfetirvgmhe continuous phase transi-
(actually, Dyck pathsof 2L steps on the diagonally rotated .. Jerp . N P .

. . . d tion we consider the difference\.(«;p):=J.(a=1;p)
square lattice, which begin and end on a w#iE x axis) and ) .
have weightx ascribed to each contact with the wg5]. ._‘]°°(a’ p. In the case of forward-ordered sequential dynam-
Near the binding-unbinding transition, when— x.=2 and ics we obtain, from Eq(25),
L — oo, the following FSS behavior was found in RE€b5]: o Je—a)pl-a)], a<a,
AL (a;p) = (26)

5(1) 4 K2 0 a= e
— K74
Zat () L1729 ©), v 2 L™ (19 and, according to Eq(7), in the case of continuous-time
dynamics,
where
o o (a-1/2? a<1/2,
2 Aw(a)zlmg)Ax(pa;p)/p: 0 w=1/2
#(w) = =X(-0). (20) - ' -
I 27)

The fact that the above relationship is not accidential can bé&he above results suggest _that the critical exponent for the
understood if one realizes that the normalization factor foorder parameter has the universal value of 2.

the continuous-time TASEP in the lim@— o becomes A consistent choice of the finite-size order parameter, dif-
ferent from the one considered ifll], is given by
L . AL(a;p):=J (a=1;p)-J (a;p). With the aid of Egs.(23)
ZH(a,0) = ElBL,pa_p: oz (1la), (21)  and(24) and the appropriate relationships between the cur-
p:

rents corresponding to the different types of dynamics, we
obtain that the leading-order FSS for the order parameter has

where the Ballot numbeB, , gives the number of Dyck the form

paths with length R andp returns to thec axis. The equality
(21) expresses the known representationzﬁfa,m) as the 1 e
partition function of Dyck paths for which each contact with AL-Ae =l G(xp), (28)
the x axis, apart from the start, has a weight[/34]. For
these paths the binding-unbinding transition takes place avhere the FSS functio® is universal:
injection ratea,=1/k.=1/2, and the FSSariable becomes 3
v=2(1/2-a)L2=xg. ~+x-[2X(x)] ™ % =0,

To continue our analysis, we substitute E§j7) into Eq. 12

G(xy) = (29

(15 and keeping the 1/ corrections obtain the asymptotic — 2 1
form > [AV X €1+ 2X (%)™, %, =0.

S (d)L 1 (a+2)-17? X 7 a+2 Note that the bulk order parametar, and the amplitude on
L \p) -9 oL () (1-72 2L | the right-hand side of Eq28) depend on the particular dy-
namics. The explicit dependence of the FSS varialle on
(22) the parameters of the problem is also nonunivesaipare
gs.(9) and(10)], but depends only on the fact whether the
ynamics is a continuous-time or discrete-time one.
Since the current in the high-density phase maps onto the
low-density phase under the exchange of argumentsg,
the FSS properties of the continuous transition across the
1 1 boundaryﬁzﬂ_c, a.<a<1 between the high-(_jensity phase
=387 = —Jgﬁ{ —xi], (23)  and the maximum-current phase follow trivially from the
L 2X(|x4)) above results and the particle-hole symmetry.

The finite-size corrections to the thermodynamic current a
fixed B> B, were evaluated to the leading order las- o°.
The results ar¢l1] in region C of the phase diagram, as

+
—>ac,

and in region All, asa— ar_,
g ¢ IV. FINITE-SIZE SCALING AT THE FIRST-ORDER

1 1 TRANSITION
N ! Al > . (29
L 4\ﬂ‘7:x1e"1 + 2X(Xy) In the thermodynamic limit the first-order phase transition

occurs across the borderling=qa, O<a<a; (7=¢,6=1)
Here between subregions Al and Bl of the phase diagram; see
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Fig. 1. It manifests itself by a finite jump in the bulk density, p, (rL)=p-°+rAp.., and in the limitx,— +% (x,——%) one
Ap.=pHP-ptP >0, wherepHP (piP) is the bulk density in  recovers the bulk density in the low-densityigh-density
the high- (low-) density phase at the transition point. The phase.

magnitude of the jump atr=8 has the general formp,,

=A(B;p)(Bc=pB), where A(B;p) is an amplitude which de- \, 7ep6s OF THE NORMALIZATION FACTOR IN THE

pends on the specific upda#‘=2 and COMPLEX PLANE
_n\1/2_ . . . .
A~ (B:p) :M, As was mentioned in the Introduction, there is a sound
p(1-p.) evidence that the zeros of the steady-state probability nor-
malization factorZ, in Eg. (1)—say, in the plane of a com-
_ pLl-p) . plex injection probability(rate a=x+iy—may provide use-
A(B;p) = (p—ﬁz)A (B:p). (30)  ful information about the nonequilibrium phase transitions of

the TASEP. EvidentlyZ, is defined up to a factor which may
We remind the reader thg@8.=1-(1-p)Y?= g for all the  depend on the parameters of the probl@my., onp, «, A).
discrete-time updates angi=1/2= g% for the continuous- Indeed, if one multiplies the steady-state weights of all the
time dynamics. configurations by the same factor, the probability distribution
It is known that the nonequilibrium first-order phase tran-will not change but that common factor will appear in the
sition in the TASEP is characterised bydavergingcorrela- normalizationZ, . For example, the explicit result for the

tion length\ defined a§41] normalizationZ{" in the continuous-time TASEP given by
B B ) Eqg. (B10) in Ref. [42], denoted here with the subscript
LN = {1\, = 1g| = Co(B,p)|a = B+ Olla = B, DEHP, and the one given by E¢.1) at q=0 in Ref.[56],
(31 with the subscript USW, differ by a rate-dependent factor:
where the factolC,(8,p) depends on whether the update is a+p-1
discrete or continuous time: Zpenp= o Zusw- (35)
1/2
Ci(B.p) = [1+@-p)™- Bl(Bc- B), Obviously, the additional zero of the expression on the left-
B(L-p)p-pB) hand side at the mean-field liret 8=1 is irrelevant to the
phase transitions. In our numerical study we will use the
2(1/2-p) expression from Ref42]. Similarly, the result foz”L in Ref.

C3(B) = (32)

[49], denoted here with the subscript GN, differs from the

1-p . ; .
AL=E one in Ref[48], subscript ERS, by a factor depending on all
Here and below the superscript # stands for all the discretehe transition probabilities:

time updates. As expecte@g(ﬂ):limp_,o Ci(pB,p). From
Eqg. (3D it follows that the correlation length at the first-order 2o = (aB)" el 36)
phase transition in the TASEP is described by a critical ex- LIGN™ y  TLERS
ponentr=1, irrespectively of the update.

In Ref.[11] the case of forward-ordered sequential updaten our study we will use foZ, the result of Ref[48] which
was analyzed and the finite-size scaling variakje C,(8 is rather simply related to our resyi#t5] for Z;:
- a)L was introduced. Note thag is the natural extension to - -
negative values of the variable/\ =C,|a—g|L. By using Z =pZ [1+37] (37
the techniques dfl1] and relationship$5) and(7), one can
readily show that close to the first-order transition liae
=B <a.=f; there exists a universal finite-size scaling func-
tion for the local density on the macroscopic scald,=r,
o<r<1:

One can readily show that at fixedQB3=<1 the zeros of the
factor[1+J,"] are at the points=+p*? which lie out of the
domain of the low-density phase, sincec@<1-(1-p)*?
<p'? for all 0<p<1. Hence, the zeros d] which are
relevant to the phase transition coincide with thos&of

b gl -1 Note that due to Eqg6) and (37) the normalization fac-
pL(rL|B:p) = p.”(Bip) + Ap-.(B;p) o1 (33 tors for the continuous-time and discrete-time dynamics are
related by the following limits:

Here the coefficient-® and Ap.. depend on the specific

update[see Eq.(30)] and recall that ZNa,p) = Lirrzjz‘[(pa,pﬂ;p) = ’Ling)pLZf(pa, PB;p).
. a(l-p) a(l-a)
AP (P = S pPNap) = S, 39
p(l-a) p-a - : :
In deriving the last equality we have taken into account that
PP ) = 4. 34y J'(Pa.pB;p)—0 asp—0; see EqL7).

The loci of the zeros of the normalization factor in the
In the limit x,—0 expression(33) reduces to the thermodynamic limit can easily be obtained with the aid of
well-known linear density profile on the coexistence line,the function
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. Ima

2= - lim FInZ,(z.p) (39)

which is the analog of the free energy density. Note that in

the cases of continuous-tini29,30 and forward-ordered se-
quential dynamics, the normalization behaves for ldrges
Z,=AL"J where the currentl, in the thermodynamic

limit, the amplitudeA, and the exponeny depend on the
update and the phase under consideration. Thus we obtain b

2=In3zp), 9 @=InI (zB;p, (40

which is not the case for the parallel update, when from Eq.
(37) it follows that

d'@=InJ.(zB:p) - In(p). (41)
The phase boundary in the complex plazeRea)

*i Im(“,) is defined by the equatiof29] Reg,(z)=Reg,(2) FIG. 2. Distribution of the zeros &' in the complexe plane at
or, equivalently, by L=40: the solid triangles are fg8=1, and the solid circles fog
|In Jl(ziﬁ;pﬂ - ||n 3z, B; p)|. (42) E;{I3LT§s'olid curves show the corresponding lines of zeros in the

Here the subscripts 1 and 2 refer to two different phases, so
t:at (tr;ere are points in the complex plane such thgt(z) u(s) = 4g/ 7. (45)

92(2).

Below we compare the available analytical and numericallhis result is expected for a continuous phase transition in
results for the distribution of the zeros of the probability the equilibrium Lee-Yang theory.
normalization factorZ () in the cases of continuous-time  (b) The line of zeros in the plane af=x+iy at the first-
and forward-ordered sequential dynamics both in the thermgorder phase transitioat «=8<1/2) between the low-

Rea

dynamic limit and in the finite-size case. density and high-density phases is given by the equation
A. Thermodynamic limit y= £ {-1/2 +x—=x2+[(1/2 -x + Xx?)?
The results for the TASEP with continuous-time dynamics + BA(1 - B)? = x3(1 - x)?|MAL2, (46)

were obtained and analyzed by Blythe and EvE2®,30. _ - _ _
Here we reproduce some of them for the sake of comparisoAs shown in[29], close to the transition point the asymptoic
with the discrete-time updates. By taking into account theform of the locus of zeros is a smooth curve that crosses the

expressions for the current in the different phasgS;®  positive real axis at right angle; see the solid curveBat
=a(1-a), JIP%=p(1-p), and M=1/4, oneobtains in =1/3 inFig. 2. For the functiong®(2) in the low- and high-

the thermodynamic limit exact analytical results. density phases close =4 one has
(a) The line of zeros in the plane of complex=x+iy at
the second-order phase transititat «=1/2, 3>1/2) be- g->%2) ~In B(1-pP) - 1-28 (z-2),
tween the low-density and maximum-current phases is given B(L-p)
by the equation
y= +{= /4 —(1/2 —x)2+[1/16 +(1/2 -x)2]“21/2. g"*2) =In B(1-p). (47)

(43 In view of Eq.(18) of Ref.[30], the above expressions imply
that at the first-order phase transition the density of zeros

As shown in[29], close to the transition poink=1/2 the 4(0) at the positive real axis is constant,

asymptotic form of the locus of zeros has two branches

=+(1/2-x), x<1/2, which cross the positive real axis at -28
impact angle ofr/4; see the solid curve @=1 in Fig. 2. u0;8) = B8 (48)
For the functionsg®(z) in the corresponding two phases A(1-p)
close to the critical poinz.=1/2 one has in agreement with the equilibrium Lee-Yang theory.
g-0%(2) = In(1/4) - 4z- 2%, gMC°(2) = In(1/4). In the case of forward-ordered sequential update, by ex-

panding the functiory—(z) [see Eq.(40)] in the neighbor-
(44) hood of the continuous phase transition pay# o, (at fixed
By using Eq.(19) of Ref.[30] one obtains that the density of 8> 8¢), we obtain
zerosu(s) at the positive real axis, as a function of the arch )
length s of the phase boundary, decreases to zero linearly g0~ (z) = In MC— - (z-2)
with s—0 as T @-p*i-@-pv
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gV (2) = In M~ (49)

Hence, the density of zergs~(s; p) at the positive real axis,
as a function of the arch leng#of the phase boundary again
decreases to zero linearly witi-0,

S
a(1-p)Y1-(1-p)*??

wo(sip) = (50)

but the proportionality coefficient differs from the one for the

continuous-time dynamics; see Ed5). In view of Eq.(38),
the definition(39) yields the relationship
’(zB) = lim (9~ (pzpB:p) — In(p)], (51)
p—>

and henceu®(s)=lim,_o[p*u~(s;p)].

In the neighborhood of the first-order phase transition at

z,=B< B we obtain
Bp-B)  B-2B+p

LD,— ~ _
@=L pp-p L
HD,— /o) — B(p_ﬁ)
g (2)=1In —p(l 5 (52)

Again the density of zerog ~(0;3,p) at the positive real
axis equals a constant,

B -2B+p
2mB(1-B)(p-B)’

w(0;8,p) = (53)

PHYSICAL REVIEW E 71, 036130(2009

Rea

-0.4

FIG. 3. Distribution of the zeros df” in the complexe plane
atL=40 andp=3/4: thesolid triangles are foB=3/4 and thesolid
circles forg=1/3. Thesolid curves show the corresponding lines of
zeros in the limitL — co.

continuous-time dynamics and in Fig. 3 for forward-ordered
sequential dynamics witip=3/4, sothat o;=1/2 in both
cases. The values ¢f are chosen so that one of them corre-
sponds to a second-order phase transif®ml in the former
case andB=3/4 in thelatter one and the other one to a
first-order transitio{3=1/3 inboth cases The similarity of

the patterns in the cases of continuous-time and discrete-time

different from the one for the continuous-time dynamics. Asdynamics is obvious; see also Figs. 3 and 4 in R&5) for

follows from Eq.(52), «*(0;8)=lim,_o[px~(0;pB,p)]-
In the thermodynamic limit the line of zeros of the nor-
malization factorZ"(2) is given by the equation

y= £{-(p*- A2 +px-x°

+1\[(p? = cA)/2 = px+ T2 + (1 = x)? = x*(p - x) 372,

(54)
Here
c=pdc =[1-(1-p*P (55)
for the second-order phase transition and
c=pX> " =B(p-PI(1-p) (56)

the parallel-update TASEP.

To derive quantitative information, we consider the clos-
est to the positive real axis pdir ,z } of complex-conjugate
zeros ofZ,(z), z=R€a)+iIm(a), and evaluate the rate of
decrease of the distande —«a as L— for both the
continuous-time and forward-ordered sequential dynamics.

In the case of a nonequilibrium second-order phase tran-
sition the best linear fits to the corresponding log-log plots
for several chain sizek are shown in Fig. 4. The results
clearly indicate a power-law asymptotic behavior of the form

(57)

|2 - o] = AL,

with amplitude A=1.0318) and shift exponent
=0.5251) in the case of continuous-time dynamicA,

for the first-order phase transition. These curves are illus=0.7848) and §=0.5363) in the case of forward-ordered

trated in Fig. 3 for the particular values pE=3/4 andB

sequential dynamics. Note that the estimated valuesare

=3/4 or B=1/3, respectively. They have the same generalclose to 1#=1/2,wherev=2 is the critical exponent of the
shape and asymptotic behavior close to the positive real axiulk correlation length for the nonequilibrium second-order
as the corresponding ones in the case of continuous-timehase transition. Remarkably, the same value 1/2 of the shift

dynamics. Moreover, under the replacement pa (hence,
X— pX, Y— py) andB— pg, in the limit p— 0 the curve(54)
with substitution(55) maps onto the curvét3) and with the
substitution(56) onto the curve46).

B. Finite-size behavior

The loci of the zeros oF, (z) in the complexa plane for
a finite chain of L=40 sites are shown in Fig. 2 for

exponentd was found by Benat al.[31] for their urn model
which also exhibits a nonequilibrium second-order phase
transition in the thermodynamic limit. Our estimates of the
amplitudes for the different type of dynamics differ consid-
erably.

The case of a nonequilibrium first-order phase transition
was studied for the particular value E£1/3 (andp=3/4 in
the case of discrete-time dynamjieshen the transition point
is at o;=1/3. Ourbest linear fits to the log-log plots of the
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FIG. 4. Alog-log plot of the shortest distance between the set of G- 5 Alog-log plot of the shortest distance between the set of
zeros ofZ, in the complexa plane and the second-order phase 267°S ofZ_in the complex« plane and the first-order phase tran-
transition pointa,=1/2 for several chain sizes. The straight lines SN Pointac=/5=1/3, forseveral chain sizeis. The straight lines -
show the best linear fits to our data obtained for the TASEP Withshow the best linear fits to our data obtained for the TASEP with
continuous-time(line 1) and forward-ordered sequentidine 2)  continuous-time(line 1) and forward-ordered sequentidine 2)
dynamics. dynamics.

B, p or the ratesy, 8) changes on passing from continuous-
distancelz, —a | as a function of the chain sizeare shown time to a discrete-time dynamics.
in Fig. 5. They strongly suggest a power-law asymptotic de- From our numerical results on the rate of covergence of
pendence of the form(57) with estimated values:A  the zeros, z of the normalization factoZ, (2) in the plane
=3.0029) and #=0.9436) for the continuous-time dynam- of complex injection probability(or ratg to the transition
ics, A=2.4898) and #=0.97Q7) for the forward-ordered POINt a=a.>0 of the infinite chain, we conjecture that the
sequential dynamics. The above values fofire close to FSS prediction
1/v=1, wherev=1 is the critical exponent of the bulk cor- |z - ad =1z - af) = AL (58)
relation length for the nonequilibrium first-order phase tran-,

sition. The amplitudes obtained for the considered updatel§ obeyed with a universal shift exponent:1/0On the
are definitely different. grounds of the above argument and the plausible assumption

that the zeros which are closest to the positive real axis
dominate the analytical properties Bf(z) for the physically
meaningful positive values &f one can regard, (orz) as

Our results support the conclusion that the versions of th@ shifted pseudocritical point. The amplituden the above
TASEP, based on different update rules, belong to the samfinite-size shift relationship appears to be nonuniversal.
nonequilibriumFSS universality class. The critical exponent
of the correlation length i$=2 for the second-order phase
transition andv=1 for the first-order one. The finite-size  The partial support of the Bulgarian National Council for
scaling functions are of the same shape for each transitio8cientific Research under project F-1402 and a grant of the
order, but differ by nonuniversal prefactors which depend orRepresentative Plenipotentiary of Bulgaria to the Joint Insti-
the specific update. The explicit dependence of the FSS variute for Nuclear Research in Dubna are gratefully acknowl-
ableL/\ on the parameters of the modé#ie probabilitiesy, edged.

VI. CONCLUSIONS
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